회전수류 물탱크

기술성 및 위생성(스테인리스 배수지 VS 콘크리트 배수지)

구 분		STS 원통형 배수지	$\mathrm{CON}^{\prime} \mathrm{C}$ 배수지
공사기간		- 토목 포함 공사기간 4~5개월	- 8 개월 이상
$\begin{gathered} \text { 시공 } \\ \text { 및 } \\ \text { 기술성 } \end{gathered}$	기밀성	탱크 내부 전체 알곤 용접 실시로 완벽한 수밀성 보장 됨	건조, 수축, 균열의 발생으로 정밀 시공 요구 균열이 발생하면 재생이 불가능하고, 방수를 해도 크랙 및 박리로 수밀성이 매우 불량함
	내진성	소재, 구조 및 조립방법 모두 내진성에 적합 (인장강도가타 재질에 비해 8배 이상 높음)	- 내진 설계로 내진성 우수
	내구성	- 반영구적 (40년 이상)	- 반영구적 (40년 이상)
	$\begin{aligned} & \text { 설치 } \\ & \text { 면적 } \end{aligned}$	- 원통형으로 효율적인 공간활용 가능	다양한 형태의 모형과 효율적인 공간 활용이 가능하나 벽체 두께가 두꺼워 설치면적을 많이차지함
위생	위생성	스테인리스 표면에 산화 피막 형성, 녹발생이 어려움 표면이 평활하여 오물이 부착되기 어렵고, 자외선 차단으로 이끼및 미생물 서식 어려움 친환경재질로 위생성 탁월 항상 깨끗한 수질 관리가 가능 기상부 및 용접부에 염소가스에 의한 부식이 우려되나, 내식성 자재와 산세 부동피막으로 해결	콘크리트 주성분인 시멘트에 독성물질이함유 되어 있어 음용수를 저장하는 탱크로서 적절치 못하며 벽체 내부 애폭시 도장이 자주 박리됨 크랙이 발생하면 침출수 유입으로 물 오염의 원인을 제공 조류 증식이나 이끼류 발생 위험이 높고 미생물 번식 및 환경호르몬 발생 우려 C 1 이온에 의해 중성화가 될 가능성이 높고 중성화되면 식수로 부적합하게됨 물이끼 및 조류 번식에 의한 내면부식, 침적 철근 콘크리트의 경우 철근 부식 우려가큼
	재확 용성	100\% 재활용	- 재활용 거의 불가, 폐기물 처리 비용 발생
CFD 전산유체역학 해석 비교 (2000톤)			
		- 마지막 챔버까지 고른 흐름으로 정체수 없음	챔버를 넘어갈때마다 물길과 정체수가 생김
$\begin{aligned} & \text { 종합 } \\ & \text { 평가 } \end{aligned}$		종래 배수지나 일반 저수조용 재질로 콘크리트 구조물 방식이 널리 채택되어 왔으나 수질환경적 측면과 누수, 크랙 등에 의한 보수비용의 과다로 이제는 점차 STS재질로 많이 교체되고 있는 실정 STS 배수지는 기존 콘크리트 배수지에 비해 1. 시공비용, 사후관리비용 등이 적으므로 예산이 절감되고, 2. 시공기간이짧아 조기 사용이 가능하며, 3. 친환경적 재질로 수질 환경면의 이미지가 크게 제고되고, 4. 누수나 보수 걱정 없이 반영구적으로 사용 가능 하면서 위생적인 수질관리가 가능함 본 배수지는 양질의 안정된 물 공급이 무엇보다 중요하다는 점과 사후 유지관리의 문제점까지 고려하여 STS 물탱크 배수지가 보다 효율적이라고 판단됨	

